Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1377020180150040503
Tissue Engineering and Regenerative Medicine
2018 Volume.15 No. 4 p.503 ~ p.510
Wicking Property of Graft Material Enhanced Bone Regeneration in the Ovariectomized Rat Model
Kim Seung-Hyun

Ahn Tae-Ho
Han Myung-Ho
Bae Chun-Sik
Oh Daniel S.
Abstract
Background: Recruitment and homing cells into graft materials from host tissue is crucial for bone regeneration.

Methods: Highly porous, multi-level structural, hydroxyapatite bone void filler (HA-BVF) have been investigated to restore critical size bone defects. The aim was to investigate a feasibility of bone regeneration of synthetic HA-BVF compared to commercial xenograft (Bio-Oss). HA-BVF of 0.7 mm in average diameter was prepared via template coating method. Groups of animals (n?=?6) were divided into two with normal (Sham) or induced osteoporotic conditions (Ovx). Subsequently, subdivided into three treated with HA-BVF as an experiment or Bio-Oss as a positive control or no treatment as a negative control (defect). The new bone formation was analyzed by micro-CT and histology.

Results: At 4 weeks post-surgery, new bone formation was initiated from all groups. At 8 weeks post-surgery, new bone formation in the HA-BVF groups was greater than Bio-Oss groups. Extraordinarily greater bone regeneration within the Ovx-HA group than Sham?Bio-Oss or Ovx?Bio-Oss group (p?
Conclusion: This study suggests that the immediate wicking property of HA-BVF from host tissue activates a natural healing cascade without the addition of exogeneous factors or progenitor cells. HA-BVF may be an effective alternative for repairing bone defects under both normal and osteoporotic bone conditions.
KEYWORD
Bone regeneration, Hydroxyapatite, Osteoporosis, Bone void filler
FullTexts / Linksout information
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø